
Software Engineering 
Research in my group(s)

27th of January 2010

ISCAS, Beijing

Robert Feldt, Chalmers & Blekinge Inst of Tech, 
Sweden



Sweden, Chalmers and BTH

Beijing

Gothenburg
Ronneby



Sweden, Chalmers and BTH

Chalmers University of Technology

Top 2 in Sweden, ~10,000 students, ~200/year in CS and SE

CS group strong in: Functional Programming, Logic, Security 
Programming, Telecommunication

BTH - Blekinge Institute of Technology

Top 10 in World in Software Engineering (Prof. Wohlin)

~6,000 students, ~200/year in CS and SE

Strong in: Empirical SE, Industry-collaboration



BTH, Ronneby

Chalmers, 
Göteborg

Robustness Cost 
Estimation

TBD

SW 
Customization

Search-
based Req<->Test

Auto 
System 

Test Agile

My PhD students



Our Scientific Approach

Empirical - data from real world/experiments

Statistical - design & analyze experiments/data rigorously

Broad - 

cover breadth of SE, many disciplines, not only tech

no predetermined solutions in company collaborations

breadth of research methods, qualitative <-> quantitative

Engineering - theory can support but ultimately SE is engineering

Theory - but we need some...



How we often work



Company Collaborations

RUAG Aerospace Sweden - Optimizing V&V, Standards, Cost models

Swedish Space Corporation - Optimizing V&V

Ericsson (Karlskrona) - SW Customizations

ABB, Sony Ericsson, Softhouse - Aligning Req & Test Activities *

Volvo Technology - Robustness Req & Testing

Wireless Car & Ericsson (Gothenburg) - Robustness

SAAB Security ATM & Systems - Agile testing, Test Creation f. Legacy Code *

ST Ericsson - Data Mining V&V Metrics Data *

Volvo Car Corp - Interface SW Development <-> Manufacturing



Quality

RAM VAMOS

ROBUST

Align

Co-Opt

Requirements 
Engineering

Verification & 
Validation

Method

ArtifactsProcesses

People Method

Artifacts Processes

People

MARS: 
QUPER

UPPREPA

UPITER

REFASTEN



ROAST Overview

Levels of Robustness (LoR)

Robustness Requirements refined from level 1 to 5

Robustness (Specification) Patterns

Pattern template similar to Design Patterns

Testing methods aligned with each Pattern/Level

Different level of Verification for different LoR’s - Checklists/
Reviews, Test methods, ...



Refining Robustness Reqs

Specificity

Realism

RR1

Global Local

RR2

RR3

Scope Quantitative

None

Simulated

Real-world

RR4

“RR5”

Normal Refinement

Alternative Refinem.



Robustness Patterns
Template similar to “Design Patterns” but adapted:

Name, Robustness Area, Intent, Motivation, Constraints, 
Applicability, Participants, Scope, Factors, Measures, Verification

Different Robustness Areas:

Input validation, Exception/Failure handling, Service degradation & 
Resource Mngmnt, (Availability/Reliability/Security/Dependability)

One pattern can specify several levels

Scope gives localization examples (for LoR1 -> LoR2)

Measures gives quantification examples (for LoR2 -> LoR3)

Factors list the robustness factors (for LoR3 -> LoR4&5)



SBST for Complex Test Data & DynLang

SB SW Testing for Code Coverage: Well researched, but:

Mostly simple test data (Numbers)

Statically typed languages

This project:

Complex data types

Dynamic programming language (Ruby)

New



RUTEG = RUby Test Case Generator
New

Static code analysis

Goal: Reduce search space

Returns info on:

Method names

Argument lists

Mandatory/Optional args

Default values

Methods called on all args

Problem-specific generators

Simple OO design

Basic types supported:

Fixnum, Float, String

Nil, Object, ArrayOf
Runs test case and collects coverage info
Individuals can be dumped as Ruby test/unit tests

GA with individuals:



Argument Type Selection

Fitness of type for arg:

For fitness-proportionate type selection

Not enough since not independent between arguments:

New

def add(a, b)
a+b

end

(Fixnum, Fixnum) or (String, String) ok!

(String, Fixnum) or (Fixnum, String) not!

Applicable

For each method application:

Suspicious Discarded



Experiment: Results New



Optimizing Space SW Verification&Validation

ECSS



VAMOS

Measure

Development Iteration

Analyze Improve
Choose

Implement

VA1 VA2 VAnP1 P2 ...

Clarify Goals

Defects

Effort

Overlap

Improve
Potential

Change
Proposal

ADC

MOM



Early Software Difficulty Visualisation

Aircraft braking system

Genetic Programming of 
Control software

Create many programs, 
diagram of where they fail

Help Engineers visualize 
problems early!

Old



Analysis of Failures of GP programs

Main difficulty: 
High energies!

Too High Retardation;
but only slightly

Slightly “under” 
spec points; 

continuous spec instead?

Cable force never 
violated; use weaker 

cable!?

Clustering the programs 
showed fundamental 

tradeoff: Retardation or 
overrun

Old



Many Limitations

Small target application

Few requirements

Low-dimensional input space

Existing simulator; typically not available in early phases

Fundamental assumption: SB AutoProgramming fail in 
similar ways to human programmers

What is your experience?

Does it really need to?

Old



Factorial Experiment on SBST Scalability
Hot

LOC CC ...

Run 1 200 5

Run 2 50 10

... ... ...

Grammatical
Evolution 
(GEVA)

Partial 
Java 
BNF

SBST
GA

(JGAP)

Coverage
(Clover)

Compare to RT



SWELL = 
Swedish VV ExceLLence

National Research School in 
Software Verification & Validation

swell.se



More information:
http://www.cse.chalmers.se/~feldt

http://www.cse.chalmers.se/~feldt
http://www.cse.chalmers.se/~feldt

