
Comparing Four Static Analysis Tools for Java
Concurrency Bugs

Md. Abdullah Al Mamun, Aklima Khanam, Håkan Grahn, and Robert Feldt
School of Computing, Blekinge Institute of Technology

SE-371 79 Karlskrona, Sweden
to.mamun@yahoo.com, aklima.bth@gmail.com, {hakan.grahn,robert.feldt}@bth.se

ABSTRACT
Static analysis (SA) tools are being used for early detection
of software defects. Concurrency bugs are different from
bugs in sequential programs, and they are often harder to
detect. This paper presents the evaluation of four static
analysis tools and their capabilities to detect Java concur-
rency bugs and bug patterns. The tools, i.e., Coverity Pre-
vent, Jtest, FindBugs, and Jlint, are evaluated using concur-
rent benchmark programs and a collection of multithreaded
bug patterns. In addition, we have categorized the bug pat-
tern detectors of the tools and also identified 87 unique bug
patterns from the tools’ detectors and literature.

1. INTRODUCTION
Multicore processors have become the main computing plat-
form from small embedded systems to large-scale servers.
In order to harvest the performance potential of multicore
processors, the software needs to be parallel and scalable.
However, writing parallel software is difficult, and detecting
concurrency defects is even more difficult.

There has been a significant amount of work on techniques
and tools to detect concurrent software defects, e.g., static
analyzers, model checkers, and dynamic analyzers [5, 16].
Static analysis tools are able to detect defects in the source
code without executing it. Model checkers apply formal ver-
ification techniques on the source code using well-defined
mathematical formulations [16]. In contrast, dynamic ana-
lyzers need to execute the code for detecting defects. The
importance of early bug detection in software development
is a well-established fact. Static analysis tools are capable of
early detection of defects and of reducing the cost of software
development [15, 17]. A number of studies have evaluated
different static analysis tools for Java programs, but very few
studies focus on Java concurrency defects [1, 23]. However,
they did not cover a wide range of concurrency defect types,
such different types of concurrency bugs and bug patterns.

This study evaluates two commercial, i.e., Coverity Prevent

(v4.4.1) [3] and Jtest (v8.4.11) [13], and two open source,
i.e., FindBugs (v1.3.9) [8] and Jlint (v3.1) [1], static analysis
tools for their ability to detect Java multithreaded bugs and
bug patterns. To evaluate the SA tools, we use a benchmark
suite containing Java programs with concurrency bugs [5], a
collection of bug patterns from a library of antipatterns [10],
and the selected tools. We address the following questions:

RQ1: How effective are static analysis tools in detect-
ing Java concurrency bugs and bug patterns?

RQ2: Are commercial SA tools better than open source
SA tools in detecting Java concurrency defects?

We conducted an experiment [25] to answer these ques-
tions where the SA tools acted as subjects, and the bench-
mark suite and bug patterns worked as objects. In addi-
tion to the evaluation of the tools, we have categorized the
rules/checkers/bug patterns used by the tools to detect de-
fects. We studied bug pattern detectors implemented by
the tools and an antipattern library [10], and finally, unified
them in a list of 87 unique Java concurrency bug patterns.

The results of the study show that the commercial tool Jtest
is better than the other tools in detecting Java concurrency
bugs, but with the drawback that the false positive ratio
reported by this tool is high. It was not possible to draw
a clear distinction among the commercial and open source
tools as the other commercial tool, Coverity Prevent, de-
tects the lowest number of defects among the tools. Both
FindBugs and Coverity Prevent report a low number of false
positive warnings.

The rest of the paper is organized as follows. Section 2
introduces concurrency bugs and bug patterns. Section 3
presents the evaluated tools and the set of test programs that
we use. Then, we present our bug patterns categorization
in Section 4. The experimental methodology is presented
in Section 5, while Section 6 presents the experimental re-
sults. Related work are discussed in Section 7. Finally, we
conclude the study in Section 8.

2. CONCURRENCY BUGS AND PATTERNS
The most general characteristic of concurrent software is
non-determinism. The non-deterministic execution of a con-
current program makes it different from a sequential pro-
gram. A concurrent program holds the non-deterministic
characteristic because of the interleaved execution of threads.
Due to the interleaved execution, a number of problems

Table 1: Selected static analysis tools.

Tool name License Version

Coverity Prevent [3] Commercial 4.4.1
Jtest [13] Commercial 8.4.11
FindBugs [8] Open Source 1.3.9
Jlint [1] Open Source 3.1

arises like data races, atomicity violations, synchronization
defects, deadlocks, livelocks, etc.

Concurrency problems can be divided into two types of ba-
sic properties, safety and liveness [16]. The safety property
ensures that nothing bad will happen during the program
execution. On the other hand, the liveness property ex-
presses that something good will eventually happen, i.e.,
the program execution progresses. The most known prob-
lems under these properties are race conditions (a.k.a. data
races, interleaving problems), deadlocks, livelocks, and star-
vation [16]. These problems must be absent in the program
in order to fulfill the safety and liveness properties. These
basic properties are abstract and some concurrency prob-
lems overlap between them. Therefore, it is not fruitful to
classify concurrency problems based on them.

A pattern means some common technique to document and
reuse specific and important examples [9], and there have
been some research regarding concurrent bug characteris-
tics and bug patterns [7, 10]. In a general sense, bug pat-
terns (sometimes called antipatterns) describe common er-
rors that can occur in the program. The terms, bug pat-
terns and antipatterns are similar with the difference that
bug patterns are related to coding defects where antipatterns
are related to defects in the design pattern or architectural
pattern. In the context of concurrent software testing, bug
patterns and antipatterns are used interchangeably.

3. TOOLS AND TEST PROGRAMS
3.1 Selection of Java Static Analysis Tools
We have selected four Java static analysis tools as shown
in Table 1. Among the tools, FindBugs and Jlint are the
most discussed tools in the literature, probably since they
are open source. However, very few articles [18, 2] have
worked with the tools Coverity Prevent and Jtest. Further,
to the best of our knowledge no previous study has evalu-
ated the effectiveness of these two commercial tools for Java
concurrency bugs.

Coverity Prevent [2, 3] is a commercial static analysis tool
combining statistical and inter-procedural analysis with Boolean
Satisfiability (SAT) analysis to detect defects. To infer cor-
rect behavior it uses statistical analysis based on the be-
havioral patterns identified in the source code. Then inter-
procedural (whole-program) analysis across method, file, and
module boundaries is done to achieve a 100% path cover-
age. A SAT engine and SAT solvers determine if paths are
feasible at runtime or result in quality, security, or perfor-
mance defects. In addition to Java, Coverity Prevent sup-
ports C# and C/C++. Coverity Prevent detects several
multithreaded defects like deadlocks, thread blocks, atomic-
ity, and race conditions.

Coverity Prevent works on multiple platforms and compilers
like gcc, Microsoft Visual C++, etc. It supports Eclipse and
Visual Studio IDEs. It also provides good configurability on
product settings like search depth. It is possible to expand
the tool by creating custom checkers.

Jtest [13, 18] is a commercial static analysis tool developed
by Parasoft. It is an integrated solution for automating a
broad range of best practices. Parasoft Jtest supports var-
ious code metrics calculations, coding policy enforcement,
static analysis, and unit testing for Java. It also provides
support for a streamlined manual code review process and
peer code review. It performs pattern and flow-based static
analysis for security and reliability. Finally, Jtest has a good
collection of checkers for detection of multithreaded bugs.

Jtest works on several platforms like Windows, Solaris, Linux,
and Mac OS X. It has both GUI and command line (batch
processing) support, and works with Eclipse, IBM RAD,
and Jbuilder. It allows the creation of custom rules using a
graphical design tool by modifying parameters or providing
code demonstrating a sample rule violation.

FindBugs [11, 12, 18] is an open source bug pattern based
defect detector developed at the University of Maryland. It
can find faults such as dereferencing null-pointers or unused
variables. It uses syntax and dataflow analysis to check Java
bytecode for detecting bugs. FindBugs reports more than
360 different bug patterns. Bug patterns are grouped into
categories, e.g., multithreaded correctness, correctness, per-
formance, etc.

FindBugs provides both GUI and command line interfaces.
In addition to its own graphical interface, it also works with
Eclipse and NetBeans. FindBugs analysis results can be
saved in XML. It requires JRE/JDK 1.5 or later versions.
FindBugs is platform independent and runs on, e.g., Win-
dows, GNU/Linux and MacOS X platforms. It is possible
to expand FindBugs by defining custom detectors.

Jlint [1, 18] is an open source static analysis tool that per-
forms syntactic checks, flow analysis, and builds a lock graph
for detecting defects like, e.t’g., inheritance and synchroniza-
tion. It can detect data races through the use of global data
flow analysis. It can detect deadlocks by inter-procedural
and inter-file analysis. Jlint provides a number of check-
ers for detecting deadlocks in multithreaded Java programs,
and it is able to detect 36 different types of bugs. It has a
component named AntiC which is a syntax checker for all C-
family languages, i.e., C, C++, Objective C, and Java. Jlint
has a simple command line interface, and runs on Windows,
UNIX, Linux. Finally, Jlint is not easily expandable.

3.2 Selection of Test Programs
We have selected test programs containing both concurrency
bugs and concurrency bug patterns. It is necessary to eval-
uate the tools with both bugs and bug patterns. Bugs can
occur due to many reasons, and the purpose of testing the
tools is to reveal their effectiveness in detecting bugs. How-
ever, collecting real-life buggy programs with a high variety
of error reasons is quite challenging and demands a huge
amount of time. Therefore, testing the tools with respect
to bug patterns is important because bug patterns can re-

flect a high variety of situations where a bug can potentially
occur [10]. However, bug patterns does not always lead to
actual bugs, hence it is meaningful to test the tools with
both bugs and bug patterns.

We used two sets of programs in our study, where the first
set represents concurrency bugs and the second set repre-
sents concurrency bug patterns. The first set of programs is
taken from a concurrency bug benchmark suite [5]. There
is a criticism of using benchmarks for evaluating the effec-
tiveness of verification and validation technologies, because
benchmarks may be incomplete in covering several factors
that can lead to an incorrect result [14]. However, bench-
marks can be used if such limitations are considered [20].

The selected benchmarks are also used in other studies. An
experience story [6] of the benchmark reports a list of 14
studies and research centers that have used the benchmark.
Experts in concurrent software testing and students of a
concurrent software testing course wrote most of the bench-
mark programs. We selected 19 programs from this bench-
mark suite that provide precise bug documentation and one
additional program. Table 2 shows the selected benchmark
programs. Detailed information about these programs are
given in the benchmark suite [5].

The second set is a collection of Java concurrency bug pat-
terns and antipatterns. We have collected these patterns
from the four evaluated tools, i.e., included those patterns
that the tools document and claim to detect, and a collec-
tion of antipatterns [10]. We have categorized and identified
87 unique bug patterns from 141 bug patterns that are dis-
cussed in Section 4. Then we collected or wrote programs for
these bug patterns. These programs are very small; usually
10 to 30 lines of code.

4. BUG PATTERN CATEGORIZATION
The selected tools have more than 100 bug patterns, i.e.,
bug patterns that the tool vendors claim that their tools
are able to detect. In order to carry out the experiment,
we need to identify the unique bug patterns. More impor-
tantly, we need to categorize these bug patterns under com-
mon vocabularies. A person may easily have a general idea
about the strength of a tool if the tool describes its check-
ers/rules/patterns under refined bug categories like dead-
lock, data race, livelock, etc. Table 3 shows the categories
of concurrency checkers/bug patterns described by the tools.

Unfortunately, bug patterns categorized by the tools are not
satisfactory. Jlint describes its bug patterns in different cat-
egories, and Jtest provides a further categorization of its bug
patterns in the bug documentations provided with the tool.
Jtest describes 19 bug patterns in the category Deadlocks
and race conditions, 6 bug patterns in the category Concur-
rency, and 18 other bug patterns that are not categorized.
It should be mentioned that the five checkers under the cat-
egory Preview, described by Coverity Prevent, is still under
refinement and hence they are not recommended for regular
industrial use.

We found two studies [7, 10] that worked with concurrent
bug patterns. Among them, Hallal et al. [10] mentioned the
advantages of having a good taxonomy of bug patterns and

Table 2: Selected benchmark programs.

Program name Documented bugs

ProducerConsumer Orphaned-thread, Wrong lock or no
lock*

SoftWareVerification Orphaned-thread, Not-atomic,
Lazy initialization*

BuggedProgram Not-atomic
SoftTestProject Not-atomic:interleaving, Wrong

lock or no lock*
BugTester Non-atomic
MergeSortBug Not-atomic
Manager Not-atomic
Critical Not-atomic
Suns account program Not-atomic
Buggy program Wrong lock or no lock, Blocking

critical section, Wrong lock or no
lock*

Bufwriter Wrong lock or No lock, Data race*,
Data race*, Wrong lock or no lock*

Account Wrong lock or no lock
Bug1(Deadlock) Deadlock
GarageManager Blocking-critical-section
TicketsOrderSim Double checked locking
Shop Weak reality (two stage lock),

Wrong lock or No lock*
BoundedBuffer Notify instead of notifyAll, Data

race*
Test Weak-reality (two stage access)
IBM Airlines Condition-For-Wait, Wrong lock or

no lock*
Deadlock ** Hold and wait

* - Bugs not documented by the benchmark suite.
** - Program not collected from the benchmark suite.

proposed a comprehensive categorization of 38 concurrency
antipatterns under 6 categories. They developed the cate-
gories keeping the benefit for the developers in mind. We
have adopted and extended these categories. In order to de-
velop a unique collection of bug patterns we have used 141
bug patterns, where 103 patterns are collected from the tools
and 38 patterns from the antipattern library developed by
Farchi et al. [7]. The antipattern library documents 8 bug
patterns from FindBugs and 11 bug patterns from Jlint.
Since this antipattern library is mostly populated with con-
currency bug patterns, this study uses the term ’bug pattern
library’ to represent it. We have found 87 unique bug pat-
terns from totally 141 bug patterns and categorized them,
as shown in Table 4. However, the bug pattern detectors

Table 3: Bug patterns and categories.

Tools Number of
checkers/ bug-
patterns

Concurrency checkers/ rules/
bug patterns by bug categories

Coverity 10 checkers
Concurrency: 4 regular checkers
Preview: 6 non-regular checkers

Jtest 43 bug patterns Thread safe programming: All
43 bug patterns

FindBugs 23 checkers with
40 bug patterns

Multithreaded correctness: All
23 checkers

Jlint 12 bug patterns
Deadlock: 7 bug patterns
Race condition: 4 bug patterns
waitNoSync: 1 bug pattern

implemented by different tools may vary to some extent,
although they are listed as a common bug pattern.

5. EXPERIMENTAL METHODOLOGY
The study is conducted as an experiment. The subjects of
the experiment are open source and commercial static anal-
ysis tools for testing multithreaded Java programs. The ob-
jects of the experiment are a collection of Java multithreaded
programs that will be analyzed by the testing tools.

The primary measure in the study is the defect detection
ratio of the tools, as defined below. Further, we also study
and categorized all warnings generated by the tools in order
to evaluate the number of false positives generated by the
tools.

Defect detection ratio =
No. of defects detected by SA tool

Total number of defects

During the evaluation, we activated all concurrency related
checkers/rules and set the tools in full analysis mode. Cover-
ity Prevent is used with both concurrency and preview (a
collection of checkers still under development) checkers. Jtest
uses a set of rules named thread safe programming in order to
evaluate our test programs. In FindBugs, the multithreaded
correctness bug category will be used with minimum pri-
ority to report level as low and analysis effort as maximal.
Jlint will be used with the +all command line option.

The experiments are executed in a Windows environment,
on a system with an Intel Core 2 Quad CPU and 3GB of
main memory. JRE 1.6 is used as the Java virtual machine,
and Microsoft Excel is used to collect the experimental data.
We use Eclipse (version 3.4.2) for the tools Coverity Prevent,
FindBugs, and Jtest since all of them provide plugins for
Eclipse. Jlint is used in the command line mode because it
does not provide a graphical user interface.

Though the benchmark programs cover a variety of concur-
rency bugs, they are not evenly distributed in different cat-
egories. Table 5 shows that the number of bugs in the dead-
lock and livelock categories is 4 and 2, respectively. Larger
bug samples within these categories would make the result
more general.

6. RESULTS
6.1 Testing Concurrency Bugs
We tested the four static analysis tools on 20 Java programs
containing 32 concurrency bugs. Table 5 shows how many
bugs that are detected by each of the SA tools. The selected
benchmark programs contain 11 different types of bugs. De-
tailed descriptions of these bug types are available in a study
by Farchi et al. [7], which are the researchers who developed
the benchmark suite.

There are 26 bugs in the data race and atomicity violation
category, 4 bugs in the deadlock category, and 2 bugs in the
livelock category. From Table 5, clearly Jtest is the best
tool in detecting data race and atomicity violation bugs. In
the deadlock category, both Jtest and Jlint detect 2 defects
out of 4. None of the tools could detect Weak-reality (two
stage access), Blocking-critical-section, and Orphaned-thread
bugs. All 5 bugs detected by Coverity Prevent falls under

Table 6: Total number of warnings produced by each
analysis tool.

Warning Type Coverity Jtest FindBugs Jlint

General 5 136 2 0
True 4 21 8 11
False positive 4 16 5 20
Undetermined 3 8 1 3

Total 16 181 16 34

the category data race and atomicity violation. FindBugs
also detected 5 bugs, where 4 bugs are in the data race and
atomicity violation category and 1 bug in the deadlock cate-
gory. Jlint detects 8 bugs, which is more than both Coverity
Prevent and FindBugs.

We documented and inspected each warning generated by
the tools. An overview of the warnings is shown in Table 6.
The general warning category contains the warnings that are
not exactly related to the correctness of the program. Jtest
reports a large number of warnings, totally 181 warnings.
More than 75% were general warnings, and among the 136
general warnings, 50 warnings are generated from a single
Jtest rule named TRS.NAME that checks whether a thread
initializes its name. Jlint does not have quality and styles
related concurrency rules, and hence it does not produce any
general warnings. FindBugs reports only 2 general warnings,
eventhough it has 23 checkers with 40 bug patterns, where
several address quality and style problems.

Looking at the number of false positive warnings, we ob-
serve that Jtest and Jlint have significantly more false posi-
tives than the other tools. FindBugs and Coverity Prevent
have almost the same number of false positive warnings, but
FindBugs can be considered as better since it checks for a
larger number of bug patterns as compared to Coverity Pre-
vent. Similarly, Jtest can be seen as more powerful than
Jlint as it checks for more bug patterns than Jlint.

6.2 Testing Concurrency Bug Patterns
We tested the tools with 87 unique bug patterns, see Table 3.
It is expected that every tool should be able to detect a
bug pattern that it claims to detect. The tools were almost
able to detect “their own” bug patterns, as promised. Five
cases are documented where Coverity Prevent (3 cases) and
Jlint (2 cases) fail to detect bug patterns, though they have
detectors for these bug patterns. Further, a few cases are
observed where the strength of the bug pattern detectors
differs though they are described in a similar way. Table 7
shows the number of bug patterns detected by the tools in
different categories. We observe that JTest detects most
concurrency bug patterns, eventhough it only detects less
than half of the bug patterns. The other commercial tool,
Coverity Prevent, only detects 8% of the bug patterns.

7. RELATED WORK
Artho [1] evaluated three dynamic analysis tools (MaC, Rivet,
Visualthreads) and two static analysis tools (Jlint and ESC/Java)
for finding concurrency bugs in Java program. The results
of the study show that none of the tools is a clear winner. A

Table 4: Categorized unique bug patterns.

Category Coverity Jtest FindBugs Jlint Antipattern Total Total unique
library patterns patterns

Deadlock 2 7 12 6 9 36 17
Livelock 0 0 1 0 2 3 2
Race Condition 6 7 8 6 8 34 18
Problems leading to unpredictable results 1 13 9 0 4 28 15
Quality & style problems 0 8 6 0 4 18 15
Efficiency / performance problems 1 3 0 0 11 15 14
General warnings / mistakes 0 5 2 0 0 7 6

Total 10 43 38 12 38 141 87

Table 5: Bug detection capability of four static analysis tools.

Bug category
Bug type
(described by benchmark programs)

Total no. of
bugs

No. of bugs detected
Coverity Jtest FindBugs Jlint

Data race
and
Atomicity
violation

Wrong Lock/No Lock 11 3 7 2 3
Non-atomic 9 - 3 - 3
Weak-reality (two stage access) 2 - - - -
Lazy Initialization 1 - 1 - -
Double checked locking 1 - - 1 -
Condition for Wait 1 - 1 1 -
Use of deprecated methods 1 1 1 - -
Sub total 26 4 13 4 6
Defect detection ratio 0.15 0.50 0.15 0.23

Deadlock

Blocking-Critical-Section 1 - - - -
Hold and wait 2 - 1 - 2
Notify instead of notifyAll 1 - 1 1 -
Sub total 4 0 2 1 2
Defect detection ratio 0 0.50 0.25 0.50

Livelock
Orphaned-Thread 2 - - - -
Sub total 2 0 0 0 0
Defect detection ratio 0 0 0 0

Total 32 4 15 5 8
Overall Defect detection ratio 0.13 0.47 0.16 0.25

major part of this study is about extending the Jlint tool.

A study by Rutar et al. [19] used five bug finding tools,
namely Bandera, ESC/Java 2, FindBugs, Jlint, and PMD,
to cross check their bug reports and warnings. This study
identified the overlapped warnings reported by the tools.
They divided the warnings into different bug categories,
where concurrency was identified as one of the categories.
Finally, a meta-tool was proposed, which combines the warn-
ings of all the five tools used.

In addition, we found several studies evaluating static anal-
ysis tools from different perspectives other than detecting
concurrency bugs. A study by Painchaud et al. [18] evalu-
ated four commercial and seven open source static analysis
tools. Their study also recommended a six steps methodol-
ogy to assess the software quality.

Two industrial case studies are described in [21], where two
static analysis bug pattern tools are evaluated. However, the
paper do not discuss any concurrency issues. Another indus-
trial case study [22] analyzes the interrelationships of static
analysis tools, testing, and reviews. The results show that
static analysis tools detect a subset of the defects detected
by reviews with a considerable number of false warnings.
However, the static analysis tools detect different types of

bugs than testing. Hence a combined approach is suggested
by the study. A third industrial case study [4] surveys three
static analysis tools along with an experience evaluation at
a large software development company.

F. Wedyan et al. [24] evaluated the usefulness of automated
static analysis tools for Java program. They evaluate the
effectiveness of static analysis tools for detecting defects and
identifying code refactoring modifications.

8. CONCLUSIONS
We have evaluated four static analysis tools for detecting
Java concurrency bugs and bug patterns. A total number
of 141 bug patterns is collected from the tools and from a
library of antipatterns. We identified and classifed 87 unique
bug patterns and tested the tools against them. Finally, we
inspected each warning reported by the tools, and classified
them as true or false positive warnings.

The defect detection ratio of the best tool, Jtest, is 0.48
and the average defect detection ratio of the tools is 0.25.
This reveals the fact that static analysis tools alone are not
sufficient in detecting concurrency bugs. Moreover, the tools
report a number false positive warnings, which is about the
same as the number of defect detected.

Table 7: Number of concurrency bug patterns de-
tected by the analysis tools.

Category Coverity Jtest FindBugs Jlint

Deadlock 2 7 10 7
Livelock 0 0 1 0
Race Condition 3 7 8 4
Problems leading to
unpredictable results

1 13 5 0

Quality and style
problems

0 7 6 0

Efficiency/performance
problems

1 3 0 0

General warnings/
mistakes

0 5 2 0

Total 7 42 32 11
Detection ratio 0.08 0.48 0.37 0.13

The experiment with the bug patterns shows that the se-
lected tools are able to detect a wide range of bug patterns.
In general, we can not say that the commercial tools are bet-
ter than the open source tools, since one of the commercial
tool is best and the other one worst in detecting concur-
rency bugs. However, the effectiveness of the tools varies in
terms of detecting bugs in different categories and in report-
ing false positive warnings. It would be more beneficial if
the users take the respective advantage of several tools for
detecting bugs in different categories.

9. REFERENCES
[1] C. Artho. Finding faults in multi-threaded programs.

Master’s thesis, Institute of Computer Systems, Swiss
Federal Institute of Technology, 2001.

[2] D. Baca, B. Carlsson, and L. Lundberg. Evaluating
the cost reduction of static code analysis for software
security. In Proc. of th 3rd ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security
(PLAS’08), pages 79–88, June 2008.

[3] Coverity. Coverity prevent static analysis, 2010.
http://www.coverity.com/products/coverity-
prevent.html.

[4] P. Emanuelsson and U. Nilsson. A comparative study
of industrial static analysis tools. Electric Notes in
Theoretical Computer Science, pages 5–21, 2008.

[5] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur.
Towards a framework and a benchmark for testing
tools for multi-threaded programs. Concurrency and
Computation: Practice & Experience, 19(3):267–79,
March 2007.

[6] Y. Eytani, R. Tzoref, and S. Ur. Experience with a
concurrency bugs benchmark. In 2008 IEEE Int’l
Conf. on Software Testing Verification and Validation
Workshop (ICSTW’08), pages 379–384, Apr. 2008.

[7] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In Proc. of the Int’l Parallel and
Distributed Processing Symp., page 286b, Apr. 2003.

[8] FindBugs. FindBugs bug descriptions.
http://findbugs.sourceforge.net/bugDescriptions.html.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

[10] H. Hallal et al. Antipattern-based detection of
deficiencies in Java multithreaded software. In Proc. of
the 4th Int’l Conf. on Quality Software, pages
258–267, Sep. 2004.

[11] D. Hovemeyer and W. Pugh. Finding bugs is easy.
ACM SIGPLAN Notices, 39(12):92–106, 2004.

[12] D. Hovemeyer and W. Pugh. Finding concurrency
bugs in java. In PODC Workshop on Concurrency and
Synchronization in Java Programs, 2004.

[13] Jtest. Parasoft Jtest: Java static analysis, code review,
unit testing, runtime error detection.
http://www.parasoft.com/jsp/products/home.jsp?

product=Jtest.

[14] B. A. Kitchenham. The case against software
benchmarking, keynote lecture. In Proc. of The
European Software Measurement Conference
FESMADASMA, 2001.

[15] S. B. Lipner. The trustworthy computing security
development lifecycle. In Proc. of the 20th Computer
Security Applications Conf., pages 2–13, Dec. 2004.

[16] B. Long, P. Strooper, and L. Wildman. A method for
verifying concurrent Java components based on an
analysis of concurrency failures. Concurrency and
Computation: Practice & Experience, 19(3):281–294,
March 2007.

[17] N. Nagappan and T. Ball. Static analysis tools as
early indicators of pre-release defect density. In Proc.
of the 27th Int’l Conf. on Software Engineering
(ICSE’05), pages 580–586, May 2005.

[18] F. Painchaud, R. Carbone, and D. Valcartier. Java
software verification tools: Evaluation and
recommended methodology. Technical memorandum
TM 2005-226, Defence R&D Canada, 2007.

[19] N. Rutar, C. B. Almazan, and J. S. Foster. A
comparison of bug finding tools for Java. In Proc. of
the 15th Int’l Symp. on Software Reliability
Engineering (ISSRE), pages 245–256, November 2004.

[20] W. Tichy. Should computer scientists experiment
more? IEEE Computer, 31(5):32–40, May 1998.

[21] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer,
and M. Schwalb. An evaluation of two bug pattern
tools for Java. In Proc. of the 1st Int’l Conf. on
Software Testing, Verification and Validation (ICST),
pages 248–257, April 2008.

[22] S. Wagner, J. Jurjens, C. Koller, and P. Trischberger.
Comparing bug finding tools with reviews and tests.
In Proc. of the 17th IFIP Int’l Conf. on Testing of
Communicating Systems, pages 40–55, May 2005.

[23] M. S. Ware and C. J. Fox. Securing Java code:
Heuristics and an evaluation of static analysis tools. In
Proc. Static Analysis Workshop, pages 12–21, 2008.

[24] F. Wedyan, D. Alrmuny, and J. M. Bieman. The
effectiveness of automated static analysis tools for
fault detection and refactoring prediction. In Proc. of
the 2nd Int’l Conf. on Software Testing, Verification,
and Validation (ICST), pages 141–150, April 2009.

[25] C. Wohlin, M. Höst, P. Runeson, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
software engineering: An Introduction. Kluwer
Academic Pub, 2000.

